Linearizability for third order evolution equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearizability Criteria for a Class of Third Order Semi-Linear Ordinary Differential Equations

Using geometric methods for linearizing systems of second order cubically semi-linear ordinary differential equations, we extend to the third order by differentiating the second order equation. This yields criteria for linearizability of a class of third order semi-linear ordinary differential equations, which is distinct from the classes available in the literature. Some examples are given and...

متن کامل

A Third Order Iterative Method for Finding Zeros of Nonlinear Equations

‎In this paper‎, ‎we present a new modification of Newton's method‎ ‎for finding a simple root of a nonlinear equation‎. ‎It has been‎ ‎proved that the new method converges cubically‎.

متن کامل

λ-Symmetry method and the Prelle-Singer method for third-order differential equations

In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry m...

متن کامل

THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS

In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2017

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.4997558